Electrogenic Na⁺ transport by Enterococcus hirae Na⁺-ATPase

Yoshimi Kakinuma^{a,*}, Kazuei Igarashi

^aFaculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263, Japan

Received 28 December 1995

Abstract Energy-dependent generation of a membrane potential $(\Delta\psi)$ (-45 mV, interior negative) was observed in the F_0F_1 , H⁺-ATPase-defective mutant of *Enterococcus hirae*. The generation of $\Delta\psi$ was found at high pH (but not at low pH), for which intracellular Na⁺ was required but not extracellular K⁺. The $\Delta\psi$ -generating activity was induced in cells cultured in media containing high concentrations of Na⁺, and was not observed in the Na⁺-ATPase mutants. These results suggest that *E. hirae* Na⁺-ATPase is responsible for the electrogenic sodium pump.

Key words: Na⁺-ATPase; Membrane potential; Enterococcus hirae

1. Introduction

The Gram-positive bacterium Enterococcus hirae, which lacks the respiratory chain, has two sodium extrusion systems: Na⁺/H⁺ antiporter [1,2] and Na⁺-translocating ATPase [3]. Na⁺/H⁺ antiporter functions to extrude Na⁺ from the cytoplasm at low pH where the proton potential is generated by F₀F₁, H⁺-ATPase, and Na⁺-ATPase functions to extrude Na⁺ at high pH where generation of the proton potential is minimal [4]. In the early work on Na⁺-ATPase, it was speculated that Na⁺-ATPase functions electroneutrally and may exchange Na⁺ for H⁺ [3]. Later Kakinuma and Harold reported the Na⁺-ATPase-dependent K⁺ uptake (KtrII) activity in whole cells; an apparently equimolar exchange of internal Na⁺ for external K⁺ took place in the absence of proton potential [5]. This Na⁺/K⁺ exchange could be explained in two ways: (i) a direct Na⁺/K⁺ exchange by the Na⁺-ATPase or (ii) the combined effect of two separate pumps: the Na⁺-ATPase and the K⁺ pump [4,6].

Our recent biochemical and molecular biological studies have shown that the expected structure of *E. hirae* Na⁺-ATPase resembles those of vacuolar (V)-type H⁺-ATPases distributed in various organisms [7–9]; the two major subunits (NtpA of 69 kDa and NtpB of 52 kDa) of *E. hirae* Na⁺-ATPase are homologous counterparts of V-ATPases [8]. Very recently we found a 16 kDa proteolipid subunit in the *E. hirae* Na⁺-ATPase complex, the amino acid sequence of which is similar to those of various 17 kDa proteolipid subunits of eukaryotic V-type H⁺-ATPases [10]. The V-type H⁺-ATPases so far reported in various organisms are all electrogenic proton pumps [11]; the 17 kDa proteolipid subunits of eukaryotic V-ATPases are considered as the electrogenic proton pathway.

In this report, we examined whether the Na⁺-ATPase works as the electroneutral Na⁺/K⁺ exchanger or the electrogenic Na⁺ pump. In a *E. hirae* H⁺-ATPase mutant, we observed the generation of a membrane potential (interior negative) which was

*Corresponding author. Fax: (81) (43) 255-1574.

totally dependent on both the internal Na⁺ and the activity of Na⁺-ATPase, but not on the external K⁺. *E. hirae* Na⁺-ATPase may be an electrogenic Na⁺ pump.

2. Materials and methods

2.1. Strains and Media

E. hirae ATCC 9790 or mutants derived from this strain were used: these were strain 7683, a mutant defective in sodium extrusion, and its revertants R-I and R-II [3], and mutant AS25, which is defective in F_0F_1 -ATPase and in proton extrusion [12]. Cells were grown on complex media [5], NaTY (1% tryptone, 0.5% yeast extract, 1% glucose and 0.85% Na₂HPO₄) or KTY (tryptone, yeast extract and glucose as above, and 1% K₂HPO₄ in place of Na₂HPO₄). In some experiments, sodium chloride was added to the culture in KTY medium to induce the Na⁺-ATPase activity [4]. In order to induce the arginine deiminase pathway [13], cells were grown on NaTY medium containing 1% arginine and 0.1% galactose instead of 1% glucose.

2.2. Preparation of the cation-loaded cells

The Na⁺-loaded cells were prepared by the monactin method as described previously [14]. The choline-loaded cells were prepared by incubating the Na⁺-loaded cells in a buffer containing 50 mM Trischloride, 400 mM choline chloride, and 10 mM glucose at pH 8.5 for more than 70 min at room temperature [5].

2.3. Measurement of the membrane potential

The membrane potential was calculated from the accumulation of [^{14}C] tetraphenylphosphonium ion (TPP+). The Na+-loaded cells were suspended in 50 mM Na+-N-tris(hydroxymethyl)methylglycine (Tricine) buffer (pH 8.6) at a density of 1 mg (dry weight) per ml, and [^{14}C] TPP+ (10 μM , 18.5 MBq/mmol) was added to the cell suspension. At intervals, aliquots were collected by filtration on Millipore filters (pore size 0.45 μm) and were washed twice with 2 mM MgSO4. The radioactivity of the filters were counted by a liquid scintillation counter. The cellular water space was considered to be 1.75 $\mu\text{l/mg}$ dry weight.

2.4. Other.

Preparation of membrane vesicles and assay of sodium-stimulated ATPase activity in the presence of 0.5 mM *N,N'*-dicyclohexylcar-bodiimide (DCCD) were performed as described previously [5]. [¹⁴C]TPP* was purchased from NEN Research Products; other reagents were of analytical grade.

3. Results

3.1. Generation of membrane potential by a H⁺-ATPase mutant at high pH

As this bacterium lacks the respiratory chain, the $\Delta\psi$ (interior negative) is usually generated by electrogenic proton extrusion via the H⁺-ATPase, the activity of which is maximal at around pH 7 [15]. It has been reported that a $\Delta\psi$ of about -120 mV is generated at pH 7.5 in the wild-type strain 9790 [16]; with Na⁺-loaded 9790 cells suspended in a buffer containing 50 mM Na⁺, a $\Delta\psi$ of about -60 mV was generated in the absence of glucose, and $\Delta\psi$ was further increased to -120 mV by addition of glucose. Fig. 1 shows the generation of $\Delta\psi$ in strain AS25, which is defective in H⁺-ATPase activity and generation of the

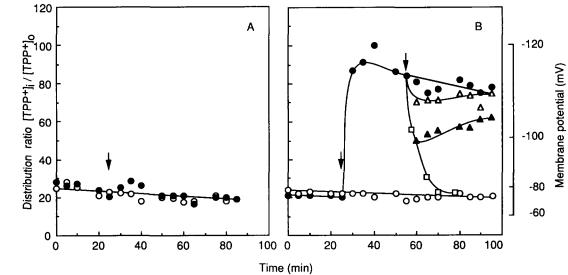


Fig. 1. Generation of a membrane potential in a F_0F_1 -ATPase mutant. Mutant AS25 was grown on NaTY medium, loaded with Na⁺ by the monactin method [14], and suspended in 50 mM Na⁺-Tricine buffer at pH 7.0 (A) or at pH 8.6 (B). After the addition of 0.5 mM DCCD at 0 min, [^{14}C]TPP⁺ uptake was measured as described in section 2. As indicated by the arrows, 10 mM glucose (\bullet), 10 μ M TCS (\triangle), 0.5 mM KCl (\blacksquare) or 5 mM KCl (\square) was added at 25, 55, 55 or 55 min, respectively.

proton potential [12]. Cells were cultured in NaTY medium, and the assays were performed with Na⁺-loaded cells suspended in 50 mM Na⁺-Tricine buffer. At pH 7.0, glucose-dependent generation of $\Delta\psi$ was negligible in this H⁺-ATPase mutant (Fig. 1A). At pH 8.6, on the other hand, a $\Delta\psi$ of -45 mV (interior negative) was generated by addition of glucose (Fig. 1B), although the H⁺-ATPase is genetically defective and DCCD, an inhibitor of H⁺-ATPase, was included in the assay buffer. With arginine-adapted AS25 cells in which the arginine deiminase pathway was induced (see section 2) a $\Delta\psi$ of about -50 mV was also generated by addition of 10 mM arginine (data not shown), suggesting that ATP is probably the common energy donor of the $\Delta\psi$ generation. The generation of $\Delta\psi$ was only slightly inhibited by addition of a protonophore such as tetrachlorosalicylanide (TCS), but K⁺ collapsed the $\Delta\psi$ at high

concentrations (Fig. 1B). These results suggested that ATP-driven generation of $\Delta \psi$, which is not coupled with proton movement, occurred at high pH.

3.2. Intracellular Na⁺ is required for generation of membrane potential

When the experiment was performed with the choline-loaded AS25 cells suspended in Tris-Tricine buffer (pH 8.6) (Fig. 2A), glucose-dependent generation of $\Delta\psi$ was small. However, the generation of $\Delta\psi$ by the choline-loaded cells was increased to about -40 mV by addition of 25 mM Na⁺ to the reaction buffer (Fig. 2B). The generation of $\Delta\psi$ (about -45 mV) was also observed in Na⁺-loaded AS25 cells suspended in a buffer free of Na⁺ (50 mM Tris-Tricine buffer, pH 8.6) (Fig. 2C), suggesting that internal Na⁺ is required for ATP-driven generation of

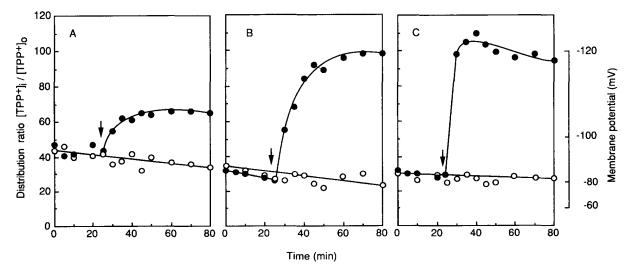


Fig. 2. Sodium dependence of generation of a membrane potential. Mutant AS25 was grown on NaTY medium, and loaded with Na⁺ or choline as described in section 2. [¹⁴C]TPP⁺ accumulation was measured in choline-loaded cells suspended in 50 mM Tris-Tricine buffer (pH 8.6) (A), choline-loaded cells suspended in Tris-Tricine buffer containing 25 mM Na⁺-Tricine (B), and Na⁺-loaded cells suspended in 50 mM Tris-Tricine buffer (C). Glucose (10 mM) was added at 25 min.

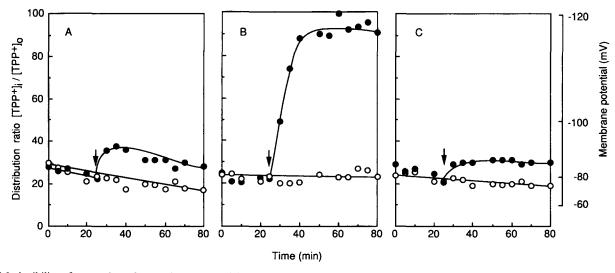


Fig. 3 Inducibility of generation of a membrane potential. Mutant AS25 was grown on KTY medium (A) or KTY medium containing 0.2 M NaCl (B). Chloramphenicol (100 μ g/ml) was added together with 0.2 M NaCl at $A_{600} = 0.1$ to the culture, and cells were harvested at $A_{600} = 0.6$ (C). The Na⁺-loaded cells were prepared by the monactin method and [¹⁴C]TPP⁺ accumulation was assayed as described in the legend of Fig. 1. Glucose (10 mM) was added at 25 min.

 $\Delta \psi$ at high pH. The generation of $\Delta \psi$ was minimal by the K⁺-loaded AS25 cells suspended in 50 mM K⁺-Tricine buffer (pH 8.6) (data not shown).

3.3. Generation of membrane potential by Na⁺-ATPase

E. hirae Na+-ATPase functions to extrude Na+ from the cytoplasm at alkaline pH [4]. It is most probable that the ATPdriven $\Delta \psi$ generation observed in the above sections results from extrusion of sodium ions via the Na+-ATPase, since the $\Delta \psi$ generation was observed at high pH (Fig. 1) and depended on the internal Na⁺ (Fig. 2). Glucose-dependent generation of $\Delta \psi$ was examined with several Na⁺-ATPase mutants in the presence of 0.5 mM DCCD (Table 1). Mutant 7683 lacks Na⁺ extrusion activity; that is, both the Na+-ATPase and Na+/H+ antiporter are defective [17]. R-I is a revertant of 7683, which had recovered only the activity of the Na⁺/H⁺ antiporter, while R-II is another revertant that had recovered both Na⁺ extrusion activities [13]. Glucose-dependent $\Delta \psi$ generation of -41 mV, which was resistant to DCCD, was generated in the parent strain 9790, but it was not observed in 7683. Generation of $\Delta \psi$ was not recovered in R-I but was in R-II. These results indicate that the Na⁺-ATPase is essential for the generation of $\Delta \psi$ under our conditions.

As E. hirae Na+-ATPase is induced in high-Na+ medium

Table 1 Generation of a membrane potential by Na⁺-ATPase mutants

Strain	Generation of the membrane potential (mV)		
	- Glucose	+ Glucose	Glucose-dependent
9790	78 ± 5	119 ± 7	41
7683	78 ± 4	78 ± 8	0
R-I	80 ± 8	84 ± 9	4
R-II	81 ± 11	121 ± 9	40

Cells were grown on NaTY medium, loaded with Na⁺ by the monactin procedure, and suspended in 50 mM Na⁺-tricine buffer (pH 8.6). After the preincubation for 10 min with 0.5 mM DCCD, the membrane potential was assayed by [¹⁴C]TPP⁺ accumulation as shown in Fig. 1. The values are in means ± S.D.

[4,6], the effect of culture conditions on the generation of $\Delta\psi$ was also examined (Fig. 3). Generation of $\Delta\psi$ at pH 8.6 was minimal in cells grown on KTY medium which contained about 15 mM Na⁺ (Fig. 3A), but it increased remarkably in cells grown on high Na⁺ medium (KTY medium containing 0.2 M NaCl) (Fig. 3B). However, when chloramphenicol (100 μ g/ml) was added to KTY medium together with NaCl, the generation of $\Delta\psi$ was limited (Fig. 3C). The Na⁺-stimulated ATPase activities of the membranes prepared from these cells were 0.01 (KTY medium), 0.15 (KTY medium containing 0.2 M NaCl) and 0.02 (the same medium in the presence of chloramphenicol) μ mol/min/mg protein, respectively. From these results we propose here that the inducible *E. hirae* Na⁺-ATPase transports sodium ions electrogenically.

4. Discussion

We observed here the Na⁺-ATPase-dependent generation of $\Delta \psi$ in intact E. hirae cells. As Na⁺-ATPase activity is optimal at pH 8.5-9.0 [4], the $\Delta \psi$ was generated at pH 8.6 but not at pH 7.0 (Fig. 1). One decade ago, the direct Na⁺/K⁺ exchange model was considered the simplest hypothesis for Na⁺-ATPasedependent K⁺ uptake (KtrII) [5]. However, we should reconsider this model of E. hirae Na⁺-ATPase, since K⁺ is probably not essential for the Na+-ATPase reaction. First, the Na+-ATPase-dependent generation of $\Delta \psi$ was observed under the experimental conditions where potassium ions are free; less than 0.1 mM K⁺ may be contaminated. Second, the generation of Δψ was not stimulated by the external K⁺ (Fig. 1B). At the high concentration, K^+ dissipated the $\Delta \psi$ (Fig. 1B). Thus K^+ is not obligatorily coupled with Na+-ATPase. This ATPase may uniport Na+; analogous to other V-type ATPases [11], the NtpK proteolipid subunit of the Na+-ATPase is the candidate for the electrogenic Na+-penetrating pathway. Although the molecular mechanism of the KtrII system is still unknown, the direct exchange model of the Na+-ATPase should be withdrawn. It is noteworthy that $\Delta \psi$, although small, was generated by choline-loaded AS25 cells suspended in a buffer free from

Na⁺ (Fig. 2A). This $\Delta \psi$ was not observed in the presence of protonophore (data not shown), suggesting that it results from proton transport. It may be possible that the Na⁺-ATPase also transports H⁺ under non-physiological conditions [18,19]. Purification of reconstitutively active enzyme is important for further investigation of the mechanism of Na⁺-ATPase and it is now in progress.

Skulachev has pointed out the importance of Na⁺ circulation for bacterial physiology [20]. We have observed the generation of a Na⁺ electrochemical potential of about -100 mV in growing cells in NaTY medium at high pH [4]. Although only the KtrII activity has been reported to be Na⁺-dependent [5], the generation of the Na⁺ potential by means of the Na⁺-ATPase should be utilized for the survival of *E. hirae* at high pH. In order to understand the significance of Na⁺ circulation in *E. hirae* it is important to investigate the interplay of many Na⁺-coupled systems.

Acknowledgements: We thank I. Yamato for critical reading of the manuscript. This work was supported in part by grant-in-aids for Scientific research (to Y.K.) from the Ministry of Education, Science, and Culture of Japan.

References

- [1] Kakinuma, Y. (1987) J. Bacteriol. 169, 3886-3890.
- [2] Waser, M., Hess-Bienz, D., Davies, K. and Solioz, M. (1992) J. Biol. Chem. 267, 5396–5400.

- [3] Heefner, D.L. and Harold, F.M. (1982) Proc. Natl. Acad. Sci. USA 79, 2798–2802.
- [4] Kakinuma, Y. and Igarashi, K. (1988) J. Bioenerg. Biomemb. 21, 679-692.
- [5] Kakinuma, Y. and Harold, F.M. (1984) J. Biol. Chem. 260, 2086– 2091
- [6] Kakinuma, Y. (1993) in: Alkali Cation Transport Systems in Prokaryotes (Bakker, E.P. ed.) pp. 277-290, CRC Press, Boca Raton, FL.
- [7] Kakinuma, Y. and Igarashi, K. (1990) FEBS Lett. 271, 97-101.
- [8] Takase, K., Yamato, I. and Kakinuma, Y. (1993) J. Biol. Chem. 268, 11610–11616.
- [9] Takase, K., Kakinuma, S., Yamato, I., Konishi, K., Igarashi, K. and Kakinuma, Y. (1994) J. Biol. Chem. 269, 11037–11044.
- [10] Kakinuma, Y., Kakinuma, S., Takase, K., Konishi, K., Igarashi, K. and Yamato, I. (1993) Biochem. Biophys. Res. Commun. 195, 1063–1069
- [11] Nelson, N. (1992) Biochim. Biophys. Acta 1100, 109-124.
- [12] Kobayashi, H. and Unemoto, T. (1980) J. Bacteriol. 143, 1187-
- [13] Heefner, D.L. and Harold, F.M. (1980) J. Biol. Chem. 255, 11396– 11402.
- [14] Harold, F.M. and Baarda, J.R. (1968) J. Bacteriol. 95, 816-823.
- [15] Kobayashi, H., Murakami, N. and Unamoto, T. (1982) J. Biol. Chem. 257, 13246–13252.
- [16] Bakker, E.P. and Harold, F.M. (1980) J. Biol. Chem. 255, 433–440
- [17] Harold, F.M., Baarda, J.R. and Pavlasova, E. (1970) J. Bacteriol. 101, 152–159.
- [18] Laubinger, W. and Dimroth, P. (1989) Biochemistry 28, 7194-7198
- [19] Dibrov, P.A., Skulachev, V.P., Sokolov, M.V. and Verkhovskaya, M.L. (1988) FEBS Lett. 233, 355-358.
- [20] Skulachev, V.P. (1985) Eur. J. Biochem. 151, 199-208.